'L

i

" om

/ SPATIAL DATA SYSTEMS:
3 /
SYSTEMS CONSIDERATIONS
Kenneth J. Dueker
HH LIST PERSON LIST TRIP LIST LINKED TRIPS
C.m
rm—y L
|
| ’ -
I l B
. e
' : N67-316410
= (ACCESSION NUMBER) (THRU)
: gl t A
5 V. (PAGES) /;SDE)‘ f
g “ i A
NP &t 1V =2 <
(NASA CR OR TMX OR AD NUMBER) {CATEGORY)
Geography Branch Technical Report No. 5
Urban and Transportation
Office of Navai Research Information Systems
Task No. 389-143 - Department of Geography
Contract Nonr 1228(37) Northwestern University

Reproduction in whole or in part is permitted for any purposes of the United States Government

The distribution of this document is unlimited

SPATIAL DATA SYSTEMS: SYSTEMS CONSIDERATIONS
by

Kenneth J. Dueker

TECHNICAL REPORT NO. §
of

ONR Task No. 389-143
Contract Nonr 1228(37)

OFFICE OF NAVAL RESEARCH

GEOGRAPHY BRANCH

Department of Geography
Northwestern University
Evanston, Illinois

December 1966

Funding Provided by
Natural Resources Program
Office of Space Sciences and Applications
National Aeronautics and Space Administration

The distribution of this document is unlimited.

PREFACE

This report provides a limited explication of current needs for
classifying and organizing spatial data for use in urban and. transportation
planning. In addition, requirements and methods for handling spatial data
are explored. Mr. Dueker emphasizes the dual need for data organization
methods and data handling capabilities, as a.requisite for utilization of
data acquired from remote sensors mounted on earth orbital platforms. This
work provides a basis for examination of some problems of integrating

remote sensors into a viable geographic information system.

e

SPATIAL DATA SYSTEMS

+

b)’ Cy

Kenneth J. Dueker

ABSTRACT

Spatial data systems are concerned with the organization, handling, and

retrieval of data whose spatial position is of concern.

of particular concern in urban and transportation planning.

Spatial data are

In these

fields considerable attention is given to spatial and temporal variations

of data.

A

The three volume report presents a discussion of concepts and techniques

that are essential in moving towards flexible and responsive urban

systems.
1.

2.

The following areas are emphasized:

Explication of terms associated with spatial data.
Discussion of means of organizing spatial data for
flexible and efficient retrieval.

Investigation of data handling capabilities for organ-
izing and manipulating spatial data.

Presentation of these topics in a tutorial form, con-

ceivably to serve as a text where none presently exist.

information

The greater speeds and storage capacities of newer computers requires

new concepts of data organization and new means to create and access these

more complex data structures. Of particular concern in urban and transpor-

tation planning are needs to link separately collected data that reldte to

the same phenomena or spatial locations, and a need for user-oriented data

PPN Sl 1N

made.

leumg 1 contains the éummary and Conclusiohs, Introduction, Data
Handling Caﬁabilities fér Supplying.fhe Deﬁands for Urban bata,.Nature of
Spatial-Temporél béta, and Queétions and Queries.

Volume 2 deals with a Language to Query Spatial-Temporal Data, a
Directory’of Spatial-Temporal Data, and Hardware-Software Configurations.

Volume 3 deals with Entity Linkage, Qrgaﬁization of Data for Retrieval,

Search Efficiencies, Point in Polygon Procedures and Retrieval from Digitized

Imagery.

Part 111

SYSTEMS CONSIDERATIONS
Chapter 5, LANGUAGE TO QUERY SPATIAL-TEMPORAL DATA

Computer programs are detailed instructions written to adapt a
completely general pufpose machine to a specific problem or application,
To solve a problem using a computer, one must write a sequence of instruc-
tions, called a program, to control the arithmetic and logical circuitry
of the machine. Another type of computer program, called “software', is
designed and written by computer specialists to provide users with more
than just an empty machine, Software may be used for building, controlling
and modifying the complex sequences of problem solving procedures required
in his computer applications. Essentially, the motivations for the devel-
opment of software have been to improve the ease with which applications
programs can be written and problems solved, and to reduce the cost of
constructing, modifying, and executing applications programs and solving

problems,

Handling Spatial Data

Urban and transportation planning analyses require software to ease
solving problems and the manipulation of spatial data, Handling spatial
data has two sets of facets. Onc set relates to characteristics of the

handlers or users, and the other relates to characteristics of spatial data.

User requirements are of five types., These are:

1.

To simplify access to the computer by the user, User-orientation
permits control of a problem-solver or data handling capability by
persons other than those with a specific programming background.

To provide a flexible and powerful language in which to define
problems. A high degrce of flexibility is necessary to handle
diverse problems relating to urban and transportation planning.
A powerful system is also necessary to permit a maximum processing

capability through a minimum of programming or formal specification

of commands,

To bring about automation in the performance of tasks. The user
should not be burdened with the task of programming the details
of often-used procedurcs, or documentation of inputs and outputs.

To link relatively independent program functions. Different pro-
cedures should operate in concert. The outputs from one program

function should be acceptable by another, Natural and reasonably
automatic communication of data across programs or operations is

essential in urban and transportation planning applications.

To design a system that can be readily expanded to handle addi-
tional problems in urban and transportation planning. Any
software system should be designed for growth and improvements.,

Requirements that relate to using spatial data for urban and transpor-

tation planning are of three types. These are:

1,

To simplify access to data by locational criteria, Urban and
transportation planning analyses often require selection of data
by spatial location., This problem is twofold and relate, a) to
the programming system and b) to the organization of data into
separate files or lists for different spatial areas., With respect
to the programming system, the sclection process should be easily
defined and efficient,

To simplify access to data by temporal criteria., In a way similar
to spatial location criteria, the programming system should permit
an easily defined and efficient selection of data items by
temporal characteristics,

To retrieve or select related data from more than one file., To
select different data related to a person or several items of data
relating to a location is a desirable capability. Depending upon
how data are organized, a programming system must be capable of
matching entities from different files or searching data stored

on chain structures,

These requirements for handling spatial data can only be partialiy met by

existing data handling capabilities, such as those described in Part II,

Chapter 2, The only system, of those reviewed in Chapter 2* that meéts
the uscr requirements is GIS (Generalized Information System). However,
at the time of this writiﬁg-it is not fully operational., In addition, it
will only be availablé to IBM Syséém/360‘users. Although GIS does not
fully meet the fequirements relating to spatial-temporal data, the system
apparently could be augmented to meet these needs of selecting data by
spatial location. Even with systems such as GIS, there is a need for
experimentation with specially designed systems for handling spatial data,
Except for Span, and to some extent Mark II1I, the systems are not oriented
to urban and transportation planning. However, these two are very much
hardware dependent and confined to data stored on serial files,

What is needed is a user-oriented programming language for expressing
problems relating to manipulation of spatial data, The objective is to
give the planner a tool for communicating, in something near his own
language, with the computer., Such a system should be designed independent
of hardware to enable more widespread implementation,

The emphasis upon user-orientation excludes the general purpose
programming languages, General or procedure-oriented programming systems
such as Fortran, Algol and Cobol are not considered here because of their
orientation to more universal applications, Greater skill and experience
is required to use these systems than can be demanded for users in
urban and transportation planning.

Similarly, list processors, such as Lisp, IPL V, and Slip are not
suitable becausc they require specialized programming skills and are not

oriented to handling large files of spatial data, Systems such as Simscript

*Span, Mark III, Colingo, IDS, GIS and On-line Data Managcment,
pan, s g0, g

that are designed for other problems are also not suitable. Even though

Simscript has general programming and list processing capabilities, its

1
documentation and orientation is foreign-to urban and transportation
S T .
+
planners, Urban and transportation planners should not have ta rely upon
the tools of others, as their needs are sufficient to demand their own

tools.,

Introduction to Quest

The Quest (QUEry of Spatial-Temporal Data) language is proposed to
facilitate the manipulation and retrieval of spatially distributed data.
Quest would permit the flexible expression of instructions in user-oriented
terms, The user-oriented terms used by Quest relate to the definitions
concerning data and the principal dimensions, which were introduced in
Chapter 3,

Although the Quest language is relevant to the user, it is not a
highly sophisticated language.* Quest is a simplified and highly stylized
language for communicating with the computer. Therefore, Quest is at a
lower level of syntactical complexity and is more highly formated and
stylized than natural English language.

Quest is designed to enable accessing data in unanticipated ways; in
ways that cut across any preconceived organization of these data, The
purpose of Quest is to enable a user to approach data in novel and unantic-
ipated ways and to elicit data relevant to his needs.

Quest does not include a complex processing capability. Rather, Quest
output provides input data for powerful algorithms. Since these algorithms,

such as regression and factor analysis, are readily available in packages,

*Quest is discussed in the present tense although it is only in the
design stage,

Quest merely enables the preparation of data to be processcd by thesc
algorithms.

These'language capabilities and design considerations are.consistent
with the thinking of the group considering "Entry and Query Larguage Design"
in Baum [1, Sec. 5, p. 7]. A work session of the Symposium on Computer-
Centered Data Base Systems considered various aspects of query language
design and prepared a cogent statement of the group's conscnsus as to the

desirable aspects of query languages.

Status of Quest

The Quest language is partially specified, but has not been implemented.
The language itself ié described in the next section of this chapter. In
addition, the last section contains a Backus Normal Form* approximation to
the formal syntax of the Quest language. The Backus.notation is used to
assist in the removal of ambiguities in the language, thus facilitating
eventual implementation.**

Clearly, a translator must be written in order to translate from Quest
language to a target language. This target language is, or in turn must be
assembled or translated into, a machine language. For instance, the trans-
lator could be an Algol or Fortran program, which translates from the Quest
language to a symbolic machine language such as Map for the IBM 7094 or
Compass for the CDC 3400. Or the translator may translate from Quest to

Fortran or Algol, which would then require additional translation. This

*See the Revised Report on the Algorithmic Language Algol 60 [3], for
application of the Backus metalinguistic formulae to Algol.

**Not all ambiguities have been removed. It is not warranted at this
level of investigation. Additional work is necessary prior to actual imple-
mentation. For example, ambiguities exist with respect to input-output
formats and subscripted variables.

[

choice depends, in part, on the efficiency of translating to Fortran or
Algol.

Conceptuaily, Quest.ié hardware independent. However, the more funda-
mental problem:of utilizing Quest g&ists in terms of ifs implcﬁentation.

The implementation issue is largely one of the system, both hardware and

data structure.

Data Structure

Quest is conceived of working with data sets stored on lists or as
data matrices,* Documented files and lists are envisioned to instruct
specific user programs as to the data formats. Thus, Quest does not
require user expressions of format. The variables or properties in a file
or on a list are specified by the documentation. Selection of the file or
list to query is a different problem. Quest is concerned, at one level,
with the selection of a data set or the differentiation betwecen data sets.
At a lower level, Quest is concerned with the selection of entities from
a data set or the differentiation within data sets. Here, it is assumed
that the appropriate data set for query is readily accessible by specifying
name, location, and time dimensions. A more detailed treatment of data set
or file selection is presented in Chapter 6.

The hardware used in storing data sets is dependent upon whether data

are stored as a serial file or on a list. When dealing with serial files,

*See Part IV, Chapter 9 for a tutorial discussion of organizing data.
A data matrix is organized as a serial file with the rows representing
observations or entities. Columns represent characteristics or properties
of an entity. For lists, the storage location of the next item is specified
rather than implied. Part of the item is a pointer to the next item on the
list. Data stored as lists facilitates the insertion and deletion of items.

 external devices such as magnetic tape are most used, For lists, large

direct access storage devices are used.

Structure of Quest

A Quest prog}am'ia a means of representing a question as a set of
commands. A Quest progrém may consist of five types of statcments, These
are: 1) data set selection statements, 2) entity sclection statcments,
3) modification statements, 4) manipulation statements, and 5) output

statements,

Illustration of Quest

A Quest program is illustrated here., Presented for each type of state-
ment is: 1) an illustrative standard form, 2) an example statement, and
3) an explanation of the example. The example pertains to a file containing
data on a household travel behavior study. The entities of this example
file are households, The properties of the households are characteristics
relating to travel behavior,

The problem is to sclect households owning two or more cars, having
three or more drivers, and who made more than ten trips on the day prior to
the interview, Then sunmarize the selected households that are located in
the same quarter square mile areal units,

Data set selection statement:

1. FOR <data set>, LOCATION = <location dimension>, TIME =
<time dimension>;

2, FOR HHTRAVEL, LOCATION = SKOKIL, TIME = 64;

*Similarly the basic statement of the Fable on-line language of Mitre
Corporation's Adam System consists of a sclection-part, an action-part, and
an output-part, The action-part is capable of modifying and selecting
entities, and the output-part has a manipulation capacity. See Baum
{1, p. 3-117] for a brief description of Fable.

-~ b B AP P POV hd -
4 HITRAVEL with a location dime

1 e
a time dimension of 64.

«

Selec
SKOKIE

Entity selection statement:

1. IF <Boolean expression>;* ,
)

2. IF CAR GT 1 AND NDRIVER GT 2 AND AUTO.TRIPS GT 10;

3. Select household entities having more than one automobile,
more than two licensed drivers, and that made more than
ten auto trips on the day prior to the interview.

Modification statement:

1. ADD (<property name> = <arithmetic expression>)
DELETE (<property name>);

2. ADD (OTHER.TRIPS = TRIPS - AUTO.TRIPS);

3. For the selected entities, a new property is created and
none are deleted.

Manipulation statement:
1. SORT ON (<property name> [Sgggggé?gé] » <property name>
ASCENDING)
[DESCENDING])3
SUM (<property name>, <property name>) ON (<property name>)
[AND COUNT])
<empty> J ’

2. SORT ON (QSECNO ASCENDING);
SUM (CAR, NDRIVER, AUTO.TRIPS, OTHER.TRIPS) ON (QSECNO) AND
COUNT;

3. For the selected houschold entities, sort in ascending order
by quarter-section number. Sum the values for the indicated
properties for each of the quarter-section numbers and count
the number of selected household entities within each quarter-
section.

Additional Modification Statement:

1. ADD (AVATRPS AUTO. TRIPS/COUNT AVOTRPS = OTHER.TRIPS/COUNT);

*The Quest translator generates a target program that allows entities
satisfying the Boolean expression to be processed by subsequent statements.
The entity section or conditional statement qualifies data entities for
further processing.

2. The purpose of this additional modification is to calculate
the average number of auto trips and the average number of
non-auto trips for each quarter scction. The AUTO.TRIPS and
OTHER.TRIP identifiers now refer to the propcrty values summed
in the manipulation statement.

Bl N

Output Statement: : oo

PRINT, TITLE (<format statemcnt>)

1. SAVE, NAME (<file name>)
DISPLAY, TITLE (<format statement>)| , (<property name list>
(<format statement>)); END

2. PRINT, TITLE (X(40), *HOUSEHOLD TRAVEL REHAVIOR STUDY* /
X(45), *SKOKIE, ILL. 1964* //, X(40), *SUMMARIZED QUARTER-
SECTION STATISTICS* /, X(35), *SELECTED HOUSEHOLDS WITH
HIGH TRIP-MAKING CHARACTERISTICS *// . . .), (CAR, NDRIVER,
AUTO.TRIPS, AVATRPS, OTHER.TRIPS, AVOTRPS, COUNT, QSECNO
(X(20), 3F(10), F(10,2), F(10), F(10,2), 2F(10))); END

3. The output statement specifies whether properties of the selected
or created entities be printed, displayed, or saved as a new file.
In the example output statement, printing of the newly created
quarter-section entities is specified. The total number of auto-
mobiles, total number of licensed drivers, total number of auto
trips via other travel mode, average number of trips by other
mode, number of selected housecholds in each quarter section zone,
and the quarter section zone number, are all specified to be

- printed for each of the newly created quarter section areal unit

entities. :

The format statement symbolism is similar to that of PL/I. How-
ever, if the user only specifies the property names a standard
format is used.
A more typical and straight-forward query might be:
FOR HH TRAVEL; IF INCOME GE 10000; PRINT, TITLE (.),
(INCOME, CARS, NDRIVERS, AUTO.TRIPS . . .(X(20), 4F(10)); END
where only those statements that are necessary to provide the needed output
are used. It is re-emphasized that the above is merely illustrative of the
type of capability sought. The example does not exhaust the capabilities of

Quest, nor should the example be construed as representing a finalized

syntatical or sematical structure of Quest.

10

Level of Quest
Quest, as described 'here, is a reference 1anguag¢ rather than a hardwarc

language. As such, Quest is a guide for all hardwa?é ;epresentations. This

philosophy is similar to the three levels of Algdl;wnameiy, a refercnce

language, a publication language, and several hardware representations.

Symbolism of Quest

The symbolism used in Quest is similar to-that used in PL/I.* That is,
the symbols for arithmetic, relational, and Boolean operators are the same
as used in PL/I. Thus, Quest is a PL/I-like language rather than, say, an
Algol-like language.

Quest is designed to express queries to spatially distributed data.
Because of the hardware independence, the constraints upon Quest are few.
Like Algol, Quest, if implemented on‘various computers, may be modified
slightly creating the existence of various dialects. On the other hand, the
difficulty with most existing user-oriented languages is that the language
and_systems were developed simultaneously. Systems limitations constrained
the development of the languages. Quest is an attempt to design a language
that is not systems constrained. However, in implementation, Quest will

be constrained by both systems considerations and the data structure.

Quest Semantics

Presented here 1is a detailed description of the semantical structure

of the Quest language. The formalisms for syntactically describing Quest

*PL/I (Programming Language I) is being developed by SHARE and IBM. It
has previously been referred to as NPL (New Programming Language). See
McCracken [3] and Radin and Rogoway [4] for brief descriptions.

11

is the Backus Normal Form notation, This is presented in the last scction

of this chapter, The following description concentrates on the weaning and
usage of Quest statements. LEach type of statement--data sct selection,
.) :
. . ‘s [
entity selection, modification, manipulation, and output--is described and

its wmeaning discussed,

Data Set Sclection Statement, The purpose of this statement is to cnable

ot

the selection of data from the various kinds of data that are a?ailable
within the system., The data set selection stateﬁent is dependent upon a
data directory or index tha£ is part of the system, Thus, the user must be
aware of the index and select files that are contained therein, using the
prescribed identifiers for properties, or completely describe files that
are not contained in the directory,

Selection of files requires specification by name of the desired file,
If data of the same name are compartmentalized into different files
according to location and/or tiﬁe, these dimensions must also be‘Specified.
On the other hand, if cach file has a unique name it is not necessary to
designate the location and time dimensions.

An important capability desired in any Quest implementation is a means
of matching or linking entities from one file to entities of another file.
Linkage is based upon matching identical values for specified properties,

For instance, matching person entities of a personnel file to person entities
of an organization file requires matching on the persons name, social security

numbeyr, employee number, or other unique identifiers. The data set selection

12

statement performs the matching of entities from two files.* Within the
entity selection statement and remaining statémcnts it then becomes neccessary
to reléte the property namc.identifiers with the appropriate files. Tor
example, the matching may be on the location coordinate of one file to

the location cooréinate of another, i.e., XY(FILE.1)EQ XY(FILE.2), or the
match may be on the employce number for person entities of the personnel and
organization files, i.e., EMPNO(PERS)EQ EMPNO(ORGAN).

With increasing use of faster and cheaver direct access storage, means
of responding to the above problems will be different. Rather, data will
be stored on dircct access storage devices, with address 1links between
entities in different files.

For example, analysis of houschold travel data may be greatly facili-
tated by chaining trip entities from the same houschold together and to the
master or household entity. Figure 5-1 illustrates the master or houschold
entities within direcf access storage. The trip entities are separate
from the household entities. Each household entity heads a chain
containing a list of trips made by members of that houschold.

In Quest, the need is to use chain addressing as a way of getting to
a subordinate segmenf record from the master segment record, of getting to
the next associated subordinate, and finally of getting from the last sub-
ordinate segment record to the master segment. To accomplish linkage or

chaining it is necessary in data definition to specifically identify those

*To reduce scarch time and to facilitate implcmentation it is reasonable
to require that the files be sorted in the same order (i.e., sorted on the .
identifier to be used for matching). This may require a manipulation state-
ment to perform the sorting, prior to the entity selection statecment that
performs the match.

HOUSEHOLD SEGMENT

ADDRESS

HH No.

TRIP INCOME

FAMILY SIZE

T

n

310

311

312

k_,—_/’

TRIP SEGMENT

13

Figure 5-1

Houschold - Trip Chains

S

ORIGIN | DESTINATION | TRIP TIME

ADDRESS | g 7ONE PURPOSE | OF TRIP) } CHAIN

K 09 10 /) K+ 3

K + 1 09 41 S [K+m+1
k) K+ 2 10 41 \ | K+m

K + 3 10 42 /) k+m+2

K +m 41 10 (| n

K+m+1 41 28 J K+ m+ m'

K+m+ 2 42 10 ! [n+ 1

14

properties that contain pointers rafher than data. The Quest translator
must generate the necessary instructions to scarch chains when a property
ideﬁtificr is used that is also a subdrdinate segmeﬁti‘ For example, when
the trip property of the houscholds are used in a‘dgost frogram?rthe trip
segment is entered and searched. |

A special type of data selection statement enables the reading of files
that arc not in the system's directory or index. Because these data are
not defined by the system, the file must be described in the query. The
following example illustrates the addition of new data:

FOR DATA = <file name>, LOCATION = <location dimension>, TIME =

<time dimension> (<property name>, <property name>, <property name>,

, (<format>));

FOR DATA = HH.TRAVEL, TIME = 66; (CITY, SCbORD, YCOORD, STRUCTURE.TYPE,

NCAR, NPER," * * (A(1), 2F(5), 2I(1), I(2), . . .));
DATA is a reserved identifiér, which when used as the first identifier in
a selection statement, calls a read procedure. The read procedure reads
from a system defined input device according to the format specified. Data
input in this manner can be queried just as existing data in the system

Entity Selection Statement. This statement consists of conditional state-

ments of the type:
1. IF <Boolean expression>;
2. 1IF <Boolean expression> THEN <unconditional statement>
ELSE <conditional statement>;
The first type of entity selection statement qualifies entities for further
processing. If the expression is false, for a particular entity, that entity
is dropped and a new entity is read from the file and tested. The second

selection statement enables the embedding of IF statements to test an entity

15

for various conditions. The Boolean expressions of the embedded IF clauses

are evaluated one after another until one yielding the value truc is found.

Then the next entity i; evaluated.' Upon testing all cntitics the statcment
following the‘compound entity selection statement is executed.

In dealing with'spatially distributed data the determination of whecther
an cntity lies within a spatial areca is an important capability. When the
locational property of data entities are geographic coordinates a procedure
must be readily available to test whether the coordinates are.within a
polygon representing the spatial area. Thus, the Quest tranélator must have
a built-in point-in-polygon procedure and a means of calling it. This call
is of the form:

1. ADD (POLYGON, n, xpl, ypl, sz’ ypz, e e, xpn, ypn);

2. 1IF <x-coordinate identifier> AND <y-coordinate identifier> IN

POLYGON OR ONLINE]
<empty> j ’

3. ADD (<query area identifier> = <polygon number>);

The above sequence of statements implies the translator has some very
specific capabilities. The tésting of whether a point is within a polygon
is a common part of spatial queries. Thus, the system should enable this
test to be made with ease. For instance, the translator must have the
following specialized capabilities:

1. An ADD (POLYGON . .) modification statement positioned prior

to the entity sclection statement designates new data that are
to be added to core for comparison to each of the entitiecs as
they are tested.

2. POLYGON, is a reserved identifier designating that the subsequent

values dcnote an array of vertice points of the polygon representing

16

VOO dned gmad oo
JR WAV IR UL;.).L&IIG LCO

the length of the array. Following‘is the x-value for the
first point, the f—value for thp first point, the x-value for
thé scéond point, the y-value for the second point, and so on.
The proéédure can assign the Xp .y = XPy and YP .1 = VP to
close the polygon.*

3. The entity selection statcment used for the polygon test also
has a specialized form. The first two identifiers must be the
property name assigned to the X—coordinate and y-coordinate,
respectively. 1IN is a reserved operator, within the entity
selection statement, which calls the polygon test procedure.

OR ONLINE is an optional portion of the test. If OR ONLINE is
included in the entity seclection statement, and a cobrdinate
point for an entity falls on-a line segment of the polygon, the
entity is called within the polygon and passes the test. If

the coordinate point of an entity falls on a line segment of the
polygon and the OR ONLINE is not part of the entity selection
statement, that entity fails the test and is outside the

polygon. Thus, the user has the option of including or excluding
points falling on the edge of query areas.

4., Provision is made to add identifiers to each of the entities

that fall within a polygon. This merely takes a modification

*Utilization of Quest in an on-line environment would be facilitated
by adding polygon descriptions by means of a cathode ray tubelight pen
device. Another reserved identifier would be necessary to instruct the
computer to look to the display device for the polygon description.

17

statement following the entity
tification number is added to each’entity passing the
.polygon test. | |
Often it is desired to partitién spatially distributed data into a
set of mutually eiclusive areal units, This is accomplished by means of:
ADD (POLYGON, n, xpj, YP1s + o =2 XPps YPR);
IF X‘AND Y IN POLYGON THEN
ADD (AREA = 01); ELSE
ADD (POLYGON, n, XP1s YP1s ¢ o «» XPp, ypn);
IF X AND Y IN POLYGON THEN

ADD (AREA = 02); ELSE

ADD (POLYGON, m, Xpj, YPy, « s «» XPy YP.)}

IF X AND Y IN POLYGON THEN

ws

éDD (AREA = 21);
PRINT ¢ ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ &
The recursive capability of the IF statement in Quest enableé an entity to
be tested for inclusion within each polygon, until it is found to be situated
within one, Then a value is assigned to the query area property name and
the program transfer to the end of the loop containing the compound IF
statement. A transfer back to the beginning of the compound IF statement

is then effectuated to test the next entity for polygon inclusion.

18

Where the query areas are not mutually exclusive, groups of three
statements to test for a 'single polygon are repecated. Each group sets up

its own loop through the entire file.®

Modification Statement., This statement enables the'addition or deletion of

properties for each of the entities, These new properties may be generated
from any simple arithmetic statement, Variables within an arithmetic state-
ment are existing properties of the entities, such that new variables for
each of the entities arc created from the existing values of properties for
thét entity. To create a new property for all entities of a file by use of
the modification statement, a transformation of existing properties is
necessary or a constant is set equal to the new property. If a constant is
set equal to the new property it becomes the new value for each entity of
the file,

In most instances the modification statement should directly follow the
entity sclection statement. This is because statements between ;he first
entity selection statement and a manipulation statement are placed within
a single loop. Thus, the entity selection, a modification statement and
possibly an output instruction are within a single loop. Each entity passes
through this loop., As will be shown, all other statements generate their
own loop to act upon the entire file. Having the modification statement
directly following the entity selection statement saves looping through the
entire file just to add or delete properties.*

All variables that are used in Quest are assumed to be of type floating.

point unless declared otherwise by a modification statement. For example:

*However, it may be necessary to create new properties before seclecting
entities, or after summing to create new entities, In these cases it is
necessary to loop through an cntire file to create new properties,

19

ADD (DECLARE <type>, <property name>, <property name>, . . .);

ADD (DECLARE INTEGER, STRUCTURE.TYPE, NCAR, NPER);
Declare is a reserved identifier which performs the conversion of variables
to type integer or Boolcan. Declare modification statements must be
positioned first in a Quest progran.

Manipulation Statement. This statement enables the sorting and summarization

of data entities. Whereas the modification statement is restricted to

action upon individual entities, the manipulation statement works with rela-
tionships between entities. Whereas the modifications statement performs the
same operation on each entity, the manipulation statement changes the entity
itself, by summarization to a new entity structure, or by reordering the
entities.

Summarization is often used in the analysis of spatially distributed
data. Data that are distributed over the spatial surface are aggregated to
areal units. The aggregation reduces the number of entities and enables
generalizations to be drawn about relative differences between areas. Sum-
marization using Quest requires data be sorted on the property designating
the summary unit. In this way, a summary unit is produced each time the key
or property value changes. Each time the key changes, all the accumulated
values are produced as the total value for the areal unit being summarized.

Suppose there exists, for each elementary school pupil in a large school
district, a machine readable record. Each student is an entity and the
machine records for all pupils constitute a file. Further suppose an auto-
mated street address translation system converted the home address of the
students to geographic coordinates. With the existence of data of this type

it is possible to allocate students to various configurations of elementary

20

school enrollment areas by using Quest. Use of coordinated data, and poly-
gons representing school enrollment areas, enableé"testing various school
. enrollment.areas without having to recode or recollect data. '
Using Quest, the pupil file is read, tested fo; inclusion Qithin the
- polygons representing a test configuration of school enrollment areas, and
the appropriate school enrollment area numbers are attached to the pupil
entities.

FOR PUPIL, TIME = 66;

ADD (POLYGON, 6, 105, 210, 163, 210, 163, 255, 142, 255, 142, 230,

105, 230);

IF XVALUE AND YVALUE IN POLYGON THEN

ADD (SCHOOL = LINCOLN); ELSE

ADD (POLYGON, n, xpl, YPy» xpz, YPys « -+ +» XP_s ypn);

IF XVALUE AND YVALUE IN POLYGON THEN

ADD (SCHOOL = KENNEDY); ELSE

This entity selection statement is used to assign pupils to appropriate
categories for summarization. Then using a manipulation statement the pupil
entities are sorted by school enrollment area number. All entities with |
identical enrollment area numbers are together, meaning, all the pupils
assigned to a particular school are sequentially grouped in the resultant
file. By means of another manipulation statement the pupil entities are
summarized to school enrollment area entities. These new entities are output

and analyzed for adequacy. If inadequate, a new configuration may be tested.

21

Assuming the level or grade of the students are denoted by numeric
values within a single property, and that anﬁlysis requires the number of
students in‘each grade{ for each school cnroliment area be'known, the
following cntity‘selection'statement must precede manipulation.

ADD (KG = O,lGRI =0,GR2=0, .. ., GR6 = 0)

IF GRADE EQ O THEN ADD (KG = 1); ELSE

IF GRADE EQ 1 THEN ADD (GR1 = 1); ELSE

IF GRADE EQ 2 THEN ADD (GR2 = 1); ELSE

IF GRADE EQ 6 THEN ADD (GR6 = 1);;

SORT ON (SCHOOL ASCENDING);

SUM (KG, GR1, GR2, . . ., GR6) ON (SCHOOL);

Output Statement. This statement outputs the answer to the query. By use

of the output statement the user has control over the form of the query
Tresponse.

There are many desirable features that could be built into the output
statement. For example, automatic centering of headings would be convenient,
as would automatic positioning of the property names of the print output
statement as columnar headings. This latter could be facilitated by modifi-
cation of the property names as follows:

ADD (KINDERGARTEN = KG, GRADE.1 = GR1, . . ., GRADE.6 = GR6);

PRINT, TITLE (. . .), (SCHOOL, KINDERGARTEN, GRADE.I,

GRADE.6 (X(15), A(15), 7F(12))); END
where the line of output following the heading would be the columnar headings

positioned according to the format portion of the statement.

22

Another output option enables the user to spccify an answer without
concern for the presentation format. If a format. statement is not provided
the property list is automatically assigned to 12 column fields.

Finally, another output option enables the uscr to specify.a graphic
display, with symbols representing the prescnce of specified phenomena
positioned in relation to the actual ground position of the phenomena.
Different kinds of symbols are used to differentiate various value levels.

This option is activated by the reserved identifier, DISPLAY. This
identifier initiates a plot of all the qualifying entities, according to
the positional coordinates. Next the argument associated with the SCALE
identifier gives the number of coordinate values per inch and the coordinates
for the origin of the output. Unless otherwise specified by the RANGE
identifier the values being displayed are assigned to the five equal classes,
with a standard symbol for each class.

An output statement under the DISPLAY option is of the type:*

DISPLAY, TITLE (*HOME LOCATION OF FIRST*/*AND SECOND GRADE
STUDENTS*//* + = FIRST GRADER*/* 2 = SECOND GRADER*),
SCALE (HOR = 10, VERT = 20) , ORIGIN (0, 0);
IF GR1 EQ 1, THEN
PLOT (+, XVALUE, YVALUE) ELSE
IF GR2 EQ 1 THEN
PLOT (2, XVALUE, YVALUE);
where PLOT is a reserved identifier with the following arguments:

PLOT (<symbol>, <x-coordinate identifier>, <y-coordinate
identifier>, <property names>);

<symbol> 1is to specify the symbol. ER is reserved to signify
standard symbols to be used for the five equal ranges.

*Acting on the school enrollment data, prior to aggregation.

23

The lowest range begins with the minimum valune of

(SR T

the data to be plotted and the high range ends
with the maximum value in the data array, i.e.,
(maximum-minimum)/5.

1

EN is reserved to signify that there is to be an
equal number of obscrvations in each of the five
rangeS. Again the maximum and minimum is determined
from the data. ERO and ENO are the same as ER and
EN, respectively, except the minimum is zero and

the maximum is 100.

<x-coordinate identifier> is the property name of the x-
coordinate.

<y-coordinate identifier> is the property name of the y-
coordinate. ‘

<property name> is the variable to be plotted.
Sample PLOT statements are of the form:
PLOT (X, XVALUE, YVALUE)
will plot an X at the home location of all pupils remaining after
entity selection.
PLOT (ER, X, Y, GR1)
will plot a standard symbol at school lecations that correspond
to thé number of first graders in attendance. *
PLOT statements are associated with each DISPLAY statement. If the
PLOT statement immediately follows the DISPLAY statement, it is in the same
operation loop through the entities. Intervening statements, such as an IF

statement, imply additional manipulation is required.

Quest Logic
The sophisticated user desires to know how a Quest program is translated.

Knowing this, the user is able to write more efficient Quest programs.

*Acting on the school enrollment data, after aggregation.

24

Similarly, translator programmers nced to know the intent of the language
designer in order to implement the language.

As has been shown, it is not necessary for the Quest programmer to
devise loéps for the pfograms to ifcraté fhrough the eﬁtiré dafa files,
Rather, loops aré.auﬁomatically generated by Quest. Elimination of looping,
as far as the programmer is concerned, is the greatest simplification pro-
vided by Quest. Yet, Quest programmers should be aware of how loops are
generated in the Quest program. This section is concerned with the logic
of programs generated by Quest programs.

Essentially, each Quest statement generates a do loop to iterate through
the entire data file, performing just the action specified by that statement.
Exceptions to this are DECLARE and POLYGON modification statements, and
statements that are between the first entity selection statement and the end
of the program or a manipulation statement, if one exists. Statements
falling in this latter category lie within the do loop established by the
entity selection statement. Figure 5-2 is a block diagram representing the
logic of scanning statements in a Quest program by the translator. Figure
5-2 is generalized to illustrate the actions upon data, i.e., whether a

statement establishes a loop or not.

Backus Notation for Quest

Statement Level

<query> ::= <program>

<program> ::= <declare modification statement><input statement><compound
statement><output statement>END | <input statement><compound statement>
<output statement>END

<declare modification statement> ::= ADD (DECLARE INTEGER<property name list>);

IDENTTFTCATION OF

STATEMENT TYPE T

RETURN

FOR <DATA SET

NAME> I}

NO

1

ADD(...) YES
or

DELETE(. .)

CALL I

MANIPULATE
]

CALL

L.OOP NON-1.OOP
HROUGIH FILE ACTION
CALL
DECLARE
<TYPE>
CALL
READ
YES | CALL
SELECT.
DATA
CALL
MODIFY

OINCIICING

©

READ.POL

IF(...IN..
<EMPTY>

CALL

Y
©

SIMPLE.
POL.TEST

CALL

COMPLEX.
POL.TEST

Figure 5-2. Quest Translator Logic (page 1 of 3).

IDENTIFICATION OF
STATEMENT TYPE

Figure 5-2.

YES CALL
)————> 1F . CLAUSER—

ADD(. ..
DELETE (...

YES

CALL

>T MODIFY

CALL
OUTPUT

{

N

SET RANGE
OF LOOP

Quest Translator Logic (page 2 of 3).

ADD. . . YES

DELETE(. ..
| NO

PRINEﬂn‘\\ YES

CALL
MODIFY .

SAVE /

YES

CALL
OUTPUT

SUM YES CALL

SORT > MANIPULATE

I

YES CALL

———> MODIFY

YES CALL
s} OUTPUT

—

ERROR
<:::>“—4> MESSAGE

~

CALL
RECOVERY

6/6&9@')@’)@ O(l)G;S :

Figure 5-2. Quest Translator Logic (page 3 of 3).

| ADD (DECLARE LOGICAL<property name list>);
<input statement> ::= <data set selection statcment> | FOR DATA= <file name>,

<file dimensions>(<property name list>(<format statement>);

<statement> ::= <compound unconditional statement> 1 <entity selection state-
ment>
<compound unconditional statement> ::= <unconditional statement> | <uncondi-

tional statement><compound unconditional statemecnt>
<unconditional statement> ::= <input statement> | <modification statement>
| <manipulation statement> | <output statement>
<data set selection statement> ::= <selection clause>; [<selection clause>
AND<se1ection clause>;
<selection clause> ::= FOR<file name> | FOR<file name>,<file dimensions>
<entity selection statement> ::= <if statement> | <if in polygon statement>
<modification statement> ::= ADD(<assignment list>); DELETE (<property
name list>); | <declare modification statement> [ADD (POLYGON,
<polygon description>);
<manipulation statement> ::= SORT ON(<property-direction list>); | SUM
(<property name list>)ON(<property name list>);] SUM(<property name
1ist>)ON(<property name 1ist>)AND COUNT;
<output statement> ::= PRINT, TITLE(<title format>), (<property name list>
(<format statement>)); | SAVE, NAME(<file name>), (<property name list>
(<format statement>)); | DISPLAY, TITLE(<title format>), SCALE(<abscissa
scale>,<ordinate’scale>),‘ORIGIN(<abscissa origin>,<ordinate origin>),
<plot options>;
<plot options> ::= PLOT(<plot symbols>,<x-coordinate identifiers>,<y-
coordinate identifiers>,<plot variable>)|[<if statement> PLOT(<plot
symbols>,<x-coordinate identifiers>,<y-coordinate identifier>,<plot

variable>)

29

<if statement> ::= <if clause>; | <if clausc>THEN<compound unconditional
statement>ELSE<statement>;

<if clause; ::= IF<boolean éxpression>

<if in polygon statement> ::= <if in polygon clause>;]‘<if in.polygon
clause>THEN<compound unconditional statement>ELSE<statement>;

<if in polygon clause> ::= IF<x-coordinate identifier>AND<y-coordinate
identifier>IN POLYGON OR ON LINE | IF<x-coordinate identifier>AND
<y-coordinate identifier>IN POLYGON

<format statement> is not specified at this time

List and Name Level

<proper£y name list> ::= <proper£y name> | <property name>,<property name
vlist>

<property name> ::= <identifier>

<property-direction list> ::¥ <property name><direction> | <property name>
<direction>,<property-direction list>

<direction> ::= ASCENDING | DESCENDING

<identifier>* ::= <letter> | <identifier><letter>] <identifier><digit>**]
<identifier>-<identifier>

<file name> ::= <idéntifier>

<file dimensions> ::= LOCATION=<location dimension>, TIME = <time dimension>
|LOCATION = <location dimension> | TIME = <time dimension> | <empty>

<location dimension> ::= <identifier>]V<va1ue>,<va1ue> | <value>

<time dimension> ::=<value string> | C <identifier>

*An identifier in Quest differs from Algol in that an open string is not
permitted. Instead a period (.) is used.
**Defined in the Revised Report on the Algorithmic Language Algol 60 [2].

30

<value string> ::= <value> | <value string,value>
<assignment list> ::= <assignment statcment> | <assignment statement>,
- <assignment list>
o

<assignment statement> ::= <identifier> = <simple arithmetic expression>*

<polygon description> ::= <number of points>,<x-coordinate of pbgnt 1>,
<y-coordinate of point 1>,<X—coordinate of point 2, y-coordinaté of
point 2,..., x-coordinate of point n y-coordinate of point n>

<plot variable> ::= <property name> ‘ <empty>

Symbols

<letters> ::=A | B|C|D|JE|JF|G|H]1]I]x]L|M|[N]o]|P]
QIRIsITlulvIwlix|y]|z]

<digits> ::=0 |1} 2|3]4als|e|7|8}9] |

<special characters> ::= * |+ | -] X | 7|5 |

<adding operator> ::= + | - |

<multiplying operator> :i= x | / |

<relational operator> ::= LT | LE | EQ | GE | GT | NE |

<logical operator> NOT | AND | OR |

<end of statement> ::= ;
<plot symbols> ::= <letter> | <number> | <special characters> |EN | ER |

ENO | ENR |

*Defined in the Revised Report on the Algorithmic Language Algol 60 [2].

31

References

Baum, C. and L. Gorsuch (Eds.), Proceedings of the Sccond Symposium
on Computer-Centered Data Base Systems, System Development Corporation,
TM-2624/100/00, 1965 (AD 625417).

McCracken, D. D., "The New Programming Language," Datamation, July,
1964.

Naur, P. (Ed.), "Revised Report on the Algorithmic Language Algol 60,"
contained in: Baumann, R., et al, Introduction to Algol, Prentice-
Hall, 1964.

Radin, G. and H. P. Rogoway, "NPL: Highlights of a New Programming
Language,’ Comm of ACM, Vol. 8, No. 1 (January 1965), p.9.

CHAPTER 6. DIRECTORY OF SPATIAL-TEMPORAL DATA

Introduction

In the query and retrievaliof_spatially distributed data, there must
exist an efficient means of selecting the appfopriate data sets for search.
This chapter is concerned to the development of the concepts for an automated
index or directory that enables this selection of data sets. This develop-
ment of a data directory draws upon the topics of the previous three chaptefs.
The notion of location and timeidimensions of data, as developed in Part II,
Chapter 3, is used to partition data sets into spatial-temporal compartments.

Each type of spatially distributed data is organized into subsets; one
subset for each spatial-temporal compartment; Spatial-temporal compartments
are derived from partitioning the spatial surface and time into three-
dimensional areas. There are four types of compartments, depending upon
whether location and time measures are uniform or non-uniform. These types
of compartments are called quadrants. These quadrants contain data having
similar spatial-temporal characteristics. The data set statement of Quest
is interpreted to determine from which quadrant to select the named set.

The quadrant plays an important role because the same data may eiist in more
than one quadrant. For example, building permit data may be filed by
municipality or may'be filed by uniform spatial regions. As described below,
these duplicate data would be filed separately, each related to a different

quadrant of the directory.

33

The directory itself is a combination list structure, and addressable
storage that is addressable by mapping function of location and time
(f(X,'y, F)). The directofy.locations point to the actual location, reel
numbers, file numbers,.etc. of daté set;.. The concept in?olved is that a
query specifies %he kind of data, the location and the time. By mcans of
the directory system the appropriate set is selected.

First, the partitioning of data observations into spatial-temporal
compartments is discussed. Then thesc compartments are classified into
spatial-temporal quadrants. Finally, problems of accessing these quadrants
are discussed.

Part of the purpose of this chapter is to introduce urbanists to the
technical problems of accessing diverse types of spatial-temporal data.

The directory system introduced here demonstrates the complexities and
immensity of a system for the autométic accessing of data sets. Obviously,
the automated process described below could be simplified as a non-automated
directory for the selection of data sets. However, the discipline of
specifying an accessing process for the computer results in a thorough

analysis of the steps involved.

Spatial-Temporal Compartments

Assuming various kinds of data are collected for a large urban area,
how should these data be organized? Presumably, each type of data could

be organized into area-wide files.* This would result in large files,

*The terms data file and data set are used synonymously in this chapter.

34

scveral hundred thousand entities for assessor's data on land ownerships.*
What about data of the same type, but observed at diffgrcnt times? Should
thcy be in the same file? Also, data'such as buildiné.permits are collectéd
by each individual municipality, Sbould they be Eéﬁbihed in a single file?

For a general-purpose query capability, data with spatial-temporal
characteristics should be organized by using the principal dimensions intro-
duced in Part II, Chapter 3, The phenomena dimension, or in essence the
kind of data, is alrecady used to separate and organize data into files. In
addition, for accessing data by location and/or time it is proposed that
data be organized into files according to spatial-temporal compartments,
Figure 6-1 illustrates the compartmentalization of the location and time
dimensions on uniform scales, In Figure 6-1 the compartment having an x-
value of 2, a y-value of 1 and a time of 3 is shown., Figure 6-1 illustrates
uniform compartments, i.e,, the area is partitioned into a regular grid and
the time scale consists of regular intervals,**

The size of the regular grids is not specified., They may be based on
100 of 1000 foot grids, quarter-square mile, a square mile, etc. The
choice is left for later analysis, The time interval for the uniform
spatial-temporal compartments is defined as a year, Annual time periods

cover many urban data such as licenses and permits,***

*If the urban area consists of more than a single county the data
may not be compatible,

**Irregular size compartments are discussed in the next section,
***Obviously, other time intervals can be used for data that do not

conform to annual time intervals, Thesc situations merely do not fit
within the uniform spatial-temporal compartment definition.

1 N2 @, 1, 9

EXTENT OF AREA
///‘ INCLUDED IN SYSTEM

Figure 6-1 A Uniform Spatial-Temporal Compartment

30

s AT A om e 2 e a1V Anma
Lail e \LJ,“[UIID.LUII, 145> dirivcdiLcu

L
a

ct
-
3
3
N

to several sets. The allocation of entities of the same kind is based

upon the location and time dimensions. An entity is assigned to the spatial-
temporal compartment that corresponds to its location and time dimensions.
Thus, an entity that has locational coordinates that convert to spatial com-

partment (2,1) and a time of 3 years from the initial year is located in

the spatial-temporal compartment (2, 1, 3) as shown in Figure 6-1. In other

words, each type of data may consist of Nf files, where:

1) Nf - Xmax Ymai tpresent
xmax = maximum x-value of the grid interval used
to define spatial compartments
Ymak = maximum y-value of the grid interval used
to define spatial compartments.
tpresent = present value on time scale measured in

years from an origin, t, = 0.

Data organized by spatial-temporal compartments offer great utility.
A file for each spatial-temporal compartment enables one to specify location
and time and then access just those data entities that are pertinent. In
the retrieval of urban data, location and time are often elements of the
selection criteria. 1In these cases, the distribution of data to files cor-
responding to spatial-temporal compartments enables the selection from
those files that satisfy the specification of location and time. ~Means of
specifying the spatial-temporal compartments are discussed in the following

section.

Quadrants
Above, a uniform spatial-temporal compartment is defined. The adjective

"uniform" restricts the location and time scales to be regular. For many

37

data, uniform spatial-temporal compartments are inadequate, The data may
be coilccted and utilized on the basis of arbitrary arcal units rather than
a gfid system, Also, many data do not f;t in the schbme of annual time
intervals. Even data that are stored in files c6r£ésponding to uvniform
spatial-temporal compartments may also be stored in files correspohding

to arbitrary areal units,*

Four kinds of spatial-temporal compartments are described here. First
is the uniform spatial-temporal compartment, The others are time-varying
compartments, uniform time-areal units and time-varying arcal units. These
arc called type I, II, III, and IV quadraﬁts, respectively, These four
quadrants arc defined by whether the spatial areas are regular or irregular
and whether the time scale is annual or some other scale,** Table 6-1

_summarizes the spatial-temporal variation for each quadrant.

Quadrant I

Figure 6-2 illustrates the organization of quadrant I data directory.
The first quadrant is organized to be accessed by specifying the uniform
measures of location and time. A function of location and time produces an
address of a record containing the names of data types, Associated with
thesc names are pointers to the beginning locations of the data files for
compartment x, y, t.

To access the data designated by <file name>, in uniform spatial-

temporal compartment x, y, t an address A within quadrant I is calculated,

*This duplication of data within a system may be warranted if the
particular kind of data is often accessed both by geographic coordinates
and by areal units,

**The quadrant-spatial compartment terminology is analagous to the term
"segments' as used in storage allocation for programs and data in computers
for time sharing applications[l]. Scgments are essentially files that can
be accessed by calling segment descriptors.

TABLE 6-1

SPATIAL-TEMPORAL COMPARTMENTS

Quadrant I

Quadrant II

Quadrant III

Quadrant IV

Dimensions
Spatial Temporal
Uniform Uniform
Uniform Variable
Variable Uniform
Variable Variable

38

ADDRESS ’ £1(X Y t) |

£ (X0t))

J 1
£V E)
N '}
£ (X,Y,t,)

£(X,Y,t))

£,(XY1t5)

fl(xiyntl)

fl(Xletl)

£1(XY;t))

ADDRESS = £, (x, ¥, t)

<FILE NAME 1> POINTER
<FILE NAME 2> POINTER
<FILE NAME nf> POINTER

Figure 6-2 Quadrant I Data Directory:
Uniform Spatial-Temporal Compartments

40

(2) | ‘ Al = fl(xn Ye t)

The address is calculated from a mapping function of the location and time
diménsions. Upon transfer to addrcssdAl‘the scquential record for x, y, t
is scanned for the <file name i>., Associated wiéh Lfiie name i>), within the

X, ¥, t entity, is a pointer to the beginning of the actual data of type i

that are within spatial-temporal compartment x, y, t,

Quadrant II

Figure 6-3 illustrates the structure of quadrant II data directory.
Quadrant II is a directory to data files having uniform spatial dimensions
but time-varying time dimensions, Becausc the time dimension varies, the
quadrant 1I directory is organized differently than the directory of quad-
rant I. In quadrant II, the directory is segmented by the type of data or
the phenomena dimension., Within each segment a variable number of records
may exist, one for each time period, Within each record, a mapping function
of the location dimension enables the selection of the spatial cbmpartment
for that time period and data type.

To access data from quadrant II for <file name i>, spatial compartment
X, y and time t, a file name list is searched for <file name i>, Associated
with <file name i> on the list is the address Kj. The address K,; is an
arbitrary point in quadrant II storage where the directory to spatial-
temporal compartments of data type i begins. To select time t, a function
of t is added to address K,; to determine the location of the record for
<file name i>, time t, Within this record, another mapping function is used
to find the pointer to the data 5f spatial compartment Xx, y.

Assﬁming the pointer to data file location takes a word of core memory

the transformation from two-dimensions to one within a record is:

(3) f(xl Y) = y + X Ymax

41

<FILE NAME nf>

l Kop * £5(np)) | <FILE NAME 2>
1 Kzz 1
| 'K21 + fz(npl)
: Ko * £(ng)
Kop + £5(n5)) <FILE NAME 1>

ADDRESS = K, + £,(n..)

"<POINTER TO DATA FILE X;Yp>
< " " " " X1Y2>
< " nwoom XY
< Mmoo XY
< momomm XY >

Figure 6-3 Quadrant II Data Directory:
Time-varying Spatial-Temporal Compartments

42

Ymax = maximum y-value-for the spatial
compartments. '
Similarly, the mapping function for.the address of the record itself is

determined from the mapping function:

S Kzi ¥ f2 (nti) B K2i ¥ (nti B 1)Xmax\{max
Where:
X = maximum x-value for the spatial
max
compartments
n; = number of data sets of type i in quadrant

IT within the time interval [to, t].*

Within the <file name i>, time t record,the mapping function, f(x, y) as
defined in equation (3) is used to locate spatial compartment x, y. The
desired address of the pointer to <file name i>, spatial-temporal compart-

ment x, y, t in quadrant IT is:

(5 Ky + £, () + £0x,) = Kyy + (ng

- 1)X

+y + mea

Y
max max X

Quadrant III

Figure 6-4 illustrates quadrant III of the data directory. Quadrant
III is designed to index data organized into files by non-uniform spatial
areas and for annual time intervals., To handle the non-uniform éreas,
quadrant IIT is segmented by the arbitrary areal units. A list is used to

access the beginning point of each areal unit index. The address for the

*Both to and t are included in the interval.

ADDRESS

AREAL UNIT

K31 + f3(t3)]

K31 + £35(¢)) AREAL UNIT 1

31
ADDRESS = Ky, + f(t)

<FILE NAME> POINTER

<FILE NAME> POINTER

<FILE NAME> POINTER

<FILE NAME> POINTER

Figure 6-4 Quadrant III Data Directory:
Uniform Time-Areal Unit Compartments

43

AREAL UNIT L

2

&

beginning of areal unit & index is represented as K Within the index
for an areal unit a mapping function o0f time is used to select the appro-
priéte record that corresponds.to the "specified timé.‘;Within the time
record a list of file names are scanned fo find a midtch for the file name
specified. Upon finding a match the associated pointer directs one to the
location of the actual data.

The access <file name i>, areal unit £ and time t the first step is to
proceed through the areal unit list. Upon finding areal unit & the

associated address, KSZ’ is accessed. Address ng is the beginning of the

index for the data of areal unit 2. To the address K a function of time

32
t is added:
(6) R ‘ f3(t) = (t - tO)R3
Where:
t - t0 = number of years or time intervals from the initial
observation to the specified time.
R3 = a constant developed from the maximum number of

data types in quadrant III times the number of
words needed for file name and pointer.
Record K32 + fs(t) is scanned for <file name i>. Upon finding <file
name i> the associated pointer prdvides the location of the actual data for

<file name i>, areal unit ¢, and time t.

Quadrant IV
Figure 6-5 illustrates quadrant IV data directory. Quadrant IV is
designed to index data organized into files by non-uniform spatial areas

and for non-annual time intervals. Quadrant IV is organized similar to

ADDRESS

45

CAREAL UNIT L

AREAL UNIT 2

AREAL UNIT 1

41
ADDRESS = K. + f,(t)

<FILE NAME> POINTER

<FILE NAME> POINTER

<FILE NAME> POINTER

<FILE NAME> POINTER

Figure 6-5 Quadrant IV Data Directory:
Time-varying Areal Unit Compartments

guadrant III except the time interval is variable. The new mapping function
for time is:
7) - f (t) =n,_, R
- g =g Ry
Where: oy
I
n,_, = number of data sets for areal unit

% within quadrant IV within the
time interval [to t].
R4 = a constant developed from the max-
imum number of data types in quadrant
IV times the number of words needed
for the file name and pointer.

To access <file name i>, areal unit 2, and time t the first step is to
proceed through the areal unit list. Upon finding areal unit & the associated
address, K42, is accessed. Address K42 is the beginning of the quadrant IV
index, for areal unit L. To address the data file corresponding to the
specified time the function of time, €1(t) in equation (7) is added to K42.
Record K42 + f4(t) is scanned for <file name i>. Finding <file name i> the
associated pointer provides the location of the actual data for <file name i>,

areal unit %, and time t.

Segment Selection

The selection of a file name segment in quadrant II and the selection
of an areal unit segment in quadrant III or IV is accomplished using a chained

list. Figure 6-6 represents the list for quadrant III.

47

Quadrant II1
Master
Record

‘1
/

To Quadrant IV

Areal

Unit K
Code 1> l, 31

Areal
Unit K
Code 2> 32

Unit K

Code 2> 3%

Unit KSL

Code L>

To Master Record

Figure 6-6. Segment Access List

Quadrant Selection

'~ The next problem is to formulate an access to the directory or the selec-
tion of the appropriate quadrant. To describe accessing the directory, the .

- process of selection from quadrants is presented. A narrative description of

48

actions taken in interpreting the file selection statement facilitates
explanation of thc usc of the data directory.

| Data arc organized in files acco;ding to their sﬁatial-tcmporal com-
partments, Like compartments are grouped into tﬁe ;one describéd quad-
rants., In a query, location and time dimensions are specified to énable
the selection of the required data file(s). From the specification of the
location and tirme dimensions, a decision is made as to which quadrant con-
tains a pointer to the appropriate file.

The data set selection statement of Quest, as described in Chapter 5,

enables the specification of location and time dimensions, TFor example:

FOR <file name i>, LOCATION

SKOKIE, TIME = 66,4

FOR <file name i>, LOCATION = 14,8, TIME = C,8
These two'data set sclection statements illustrate some of the conventions
used in Quest, In the first example, location is a code and time is speci-
fied as year and month, Additional values for time, such as the string 66,
4, 12, 16,_§0.0 specifies ycar, month, day, hour, and minute. In the second
statement, the two values for location are x and y values designating a
spatial compartment, Time, in this second statement, is indicated as a code
by the‘character C. The following value or character is the code represen-
ting a time value. The code must be converted to a time string of the typc
just described for selection of a quadrant and access to data,*

Both the location dimension and time dimension are determined to be in

one of three states, The location dimension specifies a uniform spatial com-

partment, an areal unit, or is empty. Similarly, the time dimension specifies

*The conversion from time code to actual time value can be accomplished
by a conversion table or a formula., A conversion table or formula is called
upon for <file name i>,

an annual time interval, a non-annual time interval or is empty,

There are three choices each for the location dimension and the time
dimension. The first concern is when both dimensions are non-empty, of
these, a direct decision is desired as to which quadrant to acceSs. Table
6-1 represents the selection of quadrants from the choices of the location
dimension and time dimension. A value of one in the spatial compartment
column means the location dimension is an x and y value designating a spatial
compartment.* When the location dimension denotes a spatial compartment and
the time dimension denotes an annual time interval, quadrant I of the data

directory is selected, Table 6-2 indicates the dimension combinations for

selecting the other quadrants,

TABLE 6-2

SELECTION OF QUADRANT FROM LOCATION AND TIME DIMENSIONS

LOCATION DIMENSION TIME DIMENSION
Octal
Spatial Arecal Non- Represen- Quadrant
Compartment Unit Empty {Annual Annual Empty tation
1 0 0 1 0 0 44 I
1 0 0 0 1 0 42 II
0 1 0 1 0 0 24 111
0 1 o | o 1 0 22 IV

*To facilitate quadrant selection, representation of the location dimen-
sion state and the time dimension state as a single octal number facilitates
subsequent tests. For example, view the six columns as binary numbers or
two octal numbers, Interpreting the location dimension of the file selec-
tion statement, an octal 4 is assigned for values designating that the
location dimension is a spatial compartment, Similarly, an octal 4 is
assigned when the time dimension indicates an annual interval, Shift the
location dimension octal number one position to the left., The octal 40 and
octal 4 are combined using a masking operator to form the bit-by-bit logical
product, resulting in an octal 44,

As stated above, the time dimension of the file selection statcment may
be empty. This is automatically interpretedvas a request for the most current
time vélue for the type of data being selected.

When tﬁe location dimension of a Quest file selection statement is empty,
the initial interﬁretation is that, for a given time, all data files for
spatial compartments are to be searched. Depending of the time dimension,
quadrant I of II is accessed. This interpretation may be modified if a
following statement of the Quest program is an ADD(POLYGON...) modification
statement. Using the maximum and minimum coordinate values of the polygon

a determination can be made to confine the search to a spatial compartment (s)

in which the polygon is situated.

Data Directory Implementation

As suggested in the introduction to this discussion of a data directory,
and as illustrated in the directory description, an automated directory is
immense and complex. The obvious question is whether an automated directory
is worthwhile. In answering this question the most important considerations
relate to the frequency of using the directory and to the type of query
system, i.e., an on-line query system versus a batch processing system.

An automated directory, such as described above can only be considered
feasible if the frequency of using the directory warrants its permanent
retention on direct access storage or if complek data structures require
linkage on direct access storage. Secondly, an automated directory implies
immediate need for query response. Conversely, a batch-process system does
not require an automated directory. In batch-processing, narrative instruc-
tion suffices for the selection of data files to search. The user or data
librarian consults a manual indexing system for the selection of appropriaté""

-data files.

51

An on-line data retrieval and management system enables users to
handle recal-time query needs, There must exist a sufficient need for
immediate.or real—time.response for the retrieval and management of spa-
tially disfributed data to warrant an on-line system., It is in this
context that an aﬁtomated directory is considered.

An on-line system enables a dialogue between the user-programmer and
computer System. Diagnostic assistance is built-into on-line programming
systems, Similarly, a dialogue between the user-pfogrammer and the computer
system in the selection of data files is a necessary element of an automated
data directory. Some of the safeguards that should be built-into the auto-
mated data directory are checks to insure that the specified file name
exists in the data directory, that the location dimension of the data in the
specified file is measured in'the same units as the unit used in the file
selection statement, and that the measurement units for the time dimension
are the same in the data as are specified in the file selection statement,
Also checks must be made to insure that only property names are used that
are defined;in the documented files,

As part of the on-line query and retrieval system and the automated data
directory, it would be advisable to print out a format description of the
data specified., Special emphasis in the data description should center on
the form of the time and location dimensions to assist in the selection of é
quadrant and the names of properties for use within the Quest program,

A more systematic discussion of computer systems for the storage and
retrieval of spétial data is presented in tﬁe next chapter. The above state-
ments concerning systems considerations are included here to emphasize the
importance of the computer system in the development of a data directory. The

computer systems requirements for implementation of data system capabilities

52

'conceived in this study are only implicit at this point. The next chapter
explicitly considérs the harQware requirements for the development of a
data system. An important elcment of.the hardware feqhiroments relate to
updating the data in the system and the directory.'w ,

For long term utility, a data directory must be updated. As well as
designing the system to access data files, design consideration must be
given to enable change and growth of both the system in its entirety and
the data directory. Special utility programs must be written for periodic
use in maintaining a current directory of the various spatial data.

In summary, the diverseness of spatial data of concern to urban analysts
necessitates that data be organized in terms of their spatial and temporal
characteristics. Data handling capabilities must exist for the storage,
querying, retrieval and reporting of general classes of data. Up to now
the concern has been with the conceptual problems of organizing and accessing
data. Subsequent consideration will be with hardware and systems consider-

ations for handling data.

53

Refercnces

.

1, Glascr, C. L., J. I'. Couleur, and G, A, Oliver, Syétem Design of a

Computer for Time Sharing Applications. American Federation of

Infromation Processing Socicties 1965 Fall Joint Computer Confercnce,
Spartan, 1965,

CHAPTER 7. AHARDWARE—SGFTWARE SYSTEM CONFIGURATIONS

‘

Introduction

Having presented vafious facets and concepts of general purpose systems
for handling spatial data, system design and implementation consideratipns
are now discussed. The approach is to consider a continuum of computer
system configurations. These configurations range from a general purpose
computer and a general purpose programming language to an exclusive and
specialized computer with an on-line query capability. Between these two
extremes are system configurations with limited specialized capabilities.
The system characteristics and the advantages and disadvantages of these
systems are discussed.

This discussion of system design and implementation is a narrative form
of Figure 7i1' The cells of Figure 7-1 signify system considerations
relating to the various system configurations and the various system phases.
Figure 7-1, with empty cells merely provides an overview of the organization

of this chapter.

Continuum of Hardware-Software Configurations

There are numerous possible hardware-software configurations that can be
considered in the design of a system for handling spatial data. Rather than
invgstigating all possibilities, five systems ranging from a very general
configuration to a very specialized configuration are considered. It is felt

that these configurations provide substantial insjght as to the rcquirements

[92]
92

MOTAJOAQ SOTISTIDIOBIBY) WaIsAg T~/ Sand1y

P]

SIOV.LNVAQYSIA
S3OVINVAQY
- ONILYAdN
qsn
m) NOTLVININTTAWI
) NOISHd
| (s 1enaT) (v 1940T) (¢ 10M0T) (z 12A97) (1 19407)
o3en3d SIASVId
“1y) QUTT ~ue7 Jutuwexd WLSAS
-up puy ‘o3enlueq ~ odend -0XJ PoIUSTIV
Axond suri-up (popoaoN -ue7 Sutuwexsd ~waTqoxd puy adendueq SuoTl®
1e1o0dg ‘xaindwon USUM 9S(] SATS -0Xd poluUsIx) | 93rvxoig LIBITT Sutumrexdoxy {| -andrzyuc)
asn 8ATsnIOXT {-nyoxg) oadenfueq wayqoxd puy | -xny sarsnioxy [osodand Terousnll oxemiyos
‘our1-ug ‘pousdts Lxand teIdadg |xo3indwon suIT-up Y3ty Ieinduo) puy xeinduon -aIeMpIBY
-9q A11®o131o0dg (x93indwon aurg-uQ ‘poxeys-our] |osodaing yexsusy |osodang jexsusoll Fo unnuriluo)

56

and capabilities of systems for handling spatial data,

At the first level, a system consisting of a general purpose computer
and a general purposc programming language is considered, At this systems
410ve1, work is performed by batch processing, Size.and speed of the pro-
cessor is of less concern than rapid input-output capabilities, At this
level, there is no requirement for exclusive usc of any hardware, Variable
amounts of computer time are used as needed,

The system of level 2 provides greater capability and ease of use.
Level 2 consists of a general purpose computer with an exclusive direct
access (disk or drum) storage and a problem-orignted programming language.
The exclusive direct access storage enables accessing data, at various
times and during different runs without having to load these data prior to
each use and unload after each use. Also, level 2 assumes the implementation
of a problem-oriented or task-oriented programming language. Problem-oriented
programming languages are highly specialized to specific problems. Whether
these arc a programming language per se or a generalized package program,
problem or task oriented systems are designed to handle a class of problems,
The systems are designed to simplify problems within its class, Problems
beyond its class cannot be or are not easily accommodated, Computer systems
at level 2 enable manipulation of data with relative ease for given types
of problems, such as file manipulation, data retrieval and/or data reportiné.
In addition data that are accessed often, are retained for continued usage,

Level 3 consists of on-line, time shared systems. Time-sharing permits
numerous remote users to work directly (or on-line) with the same computer,
concurrently, yet independently, [°, p.1]. With a filc-oriented and problem-
oriented programming language, such a system accommodates queries to exclu-

sive direct access storage, Systems at level 3 are suitable for responding to

57

queries but not for large data processing jobs.

Level 4 consists of a special purpose on-line computer system. These
systems are special putpose with respect to the data base and with respect
to the query language. Queries are to a common base of spatialjdata and the
query language deals with a specific set of problems. When not used for on-
line queries these systems may be operated as a batch processor for related
large-scale data processing or for general data processing. Thus, a general
purpose programming language must also be available for use in this mode.
Stated in reverse, operation in batch processing mode is subject to inter-
rupt for on-line queries.

Finally, level 5 consists of specially designed hardware and software,
and on-line Cathode Ray Tube (CRT) devices. Systems at this level are
designed to handle specified jobs and to provide desired capabilities. The
specially designed features might consist of such features as digitizing
coordinate locations using cathode ray tube and light pen, hardware for
determining whether points are in polygons, and other devices to facilitate
the manipulation of urban data. Although systems at this level do not
exist and it is mere conjecture as to these configuration and features, it
is assumed that systems of this level have all of the capabilities of the
lower level plus specially designed features for handling spatial data,

as well as additional built-in features.

System Phases

Specific phases of system development are considered in evaluating the
characteristics of systems at each level along the continuum. These phases
are design, implementation, use and updating. Each of these phases imposes

constraints upon a system configuration.

58

System Design

The design of systems consists of defining the problem, selecting
objectives, synthesizing‘of inventing alternative systems, analysis of the
systems, and selection.of the ”besé“ systém (4, p.9].

Problem definition is the transformation of an indeterminate situation
into a pattern of factual data for the purpose of setting objectives. Ex-
pressing a problem is expressing an unsatisfied need. Thus, problem defin-
ition is determining needs. Of interest here are the needs of an agency
for spatial data.

Thé product of problem definition is a set of objectives. Selecting
or choosing objectives guide the search for alternative systems, and provide
the criteria for selecting a system. Objectives describe the desired
physical system in terms of things that are valued. This value system pro-
vides the means for judging the relative merits of the alternative physical
systems to be synthesized.

There is considerable interplay between the selection of objectives and
"systems synthesis.'" Systems synthesis is the development of alternative
solutions to a problem. Systems synthesis consists of defining boundary
conditions, and inputs and outputs. Then one proceeds to determine the
functions or opérations that must be performed, and relates those functions
within a system to provide the desired outputs.

Systems analysis is the opposite of systems synthesis. In systems
analysis, one decomposes the alternative systems to determine all relevant
sequences. These consequences are compared to the initiél objectives, pro-
viding a feedback to systcﬁs synthesis and selection of objectives. Unfor-
tunately, the decision-making procedure is not often straight-forward. When

the consequences of alternative systems are uncertain, independent and involve

59

different scales of value, there is no comprchensive procedure for making
a decision. Except for pieces, such as maximizing profit or minimizing cost,
. | .
the selection of alternatives is usually intuitive elimination and selcction
- ‘

process.* !

The systems design problem is bounded by the statement of objectiveé
or requirements, as discuséed above, by technological limitations, and a
limit of time and resources. It is of little valuc to design a system that
is beyond present technology, beyond time limits, or beyond cost limits.
Thus, feasibility considerations may impose a constraint upon systems per-
formance objectives and require their reformulation.

A system that responds to user needs is the primary objective in system
design. In.synthesizing alternative systems, the needs and objectives are
translated into hardware coﬁfiguration. This hardware configuration is
constrained by financial capacity. Given an upper limit as to hardware,

a software system is designed for the given hardware configuration. The
software design attempts to meet the needs and objectives. If a.software
system, for a given hardware configuration, is unable to meect the needs, the
objectives and hardware are reconsidered. Either the objectives are scaled
down or the hardware configuration is augumented, so that software can

be designed to meet the objectives.

Implementation
The implementation phase of system development poses problems that

influence system configuration. Important.implementation considerations

*See Hall [4], Chapter 4 for a detailed treatment of this system design
process. In his framework, this process is Exploratory Planning.

60

relate to staging the development of system components to maximize use at
each stage, to minimize overall cost, and to reduce fluctuation of resource
_ rcquiremen£s. System performance and cost considerations also includes the
training of personnel, development time for software, and lead fimes and
arrival of hardware. Finally, a plan for collecting and organizing data
is devised and implemented; On one hand, implementation is constrained by
hardware and software development and installation schedules. On the other
hand, system implementation is dependent upon accumulating the necessary
data content. Resource allocation obviously plays an important role in the

development of a computer system and a data base.

Use

Ease with which a system may be used is an important consideration in
system design. As might be expected, systems which are easy to use perform
more functions internally. If these internal functions are automated, there
is a need for more powerful hardware and/or more sophisticated software.
For instance an automated question-answering systcm requires more power and
sophistication than a system without this capability. On the other hand,
simpler compufer systems may have considerable utility if coupled with
skilled techniéians. In a system of this type the computer system is a
processor. The technicians provide a decision function that translates ques-
tions to queries, selects data for processing, specifics parameters to package
programs, and organiies output. More complex computer systems are necessary
to.reduce the need for scarce skilled systems technicians and provide direct
interface between the computer system and the users.

As the level increases on the continuum of hardware-software configura-

tions, more decision functions are automated, and the easier it is for users

61

to communicate directly with the computer system. As one moves along the
continuum there is less need for special training to communicate with the

. computer system, or less nced to go through a systems technician.

Updating Data

Ease of updating a data system is an important consideration of system
design and in selecting a system configuration along the continuum. Methods
for updating or adding to files that are retained on direct access storage
are particularly important. As well as updating data, updating of data direc-

tories is necessary for systems containing diverse types of urban data.

System Characteristics

Some characteristics of systems along the continuum are presented below.
The framework, developed above, is used to draw some generalizations and to
discuss advantages and disadvantages of systems at the five levels along the

continuum.

Level 1

Computer systems at level 1 are completely general purpose. The data
system at this level is merely a set of package programs that process data
stored on serial or tape files. As far as the computer system is concerned
operation of the data system is just another job.

Systems at level 1 impose stringent design constraints. For the most
part, systems at this level consist of package programs. These are utility
or package programs that are submitted as individual runs; Utility programs
for editing, formatting, search, and reporting are necessary. By specifying
parameters, programs such as these have considerable power.

With the data system being just another user of the general purpose

62

computer system the configuration of the data base is largely limited to
serial or tape files that are suitable for batch processing and without
permaﬁent‘hardware requireﬁents.

Systenm implementa£ion, use, and updating data are all controlled by the
hardware—softﬁaré'configuration of a general purpose computer and a general.
purpose programming language. Implementation consists largely of writing
package or utility programs and preparing data organized in serial files.
System use consists of searching or processing data by specifying parameters
and running package programs. In cases where the package programs cannot
perform the job, special programs must be written using whatever general pur-
pose programming language is available. Updating data at this level is
reasonably straight forward. Updating consists of obtaining data and augment-
ing, replacing, or merging to existing data,

The chief advantage of systems at level 1 is that no fixed hardware
cost is required. Using someone elses computer installation, the computer
charges are variable, and depend on the amount of computer time used. The
package progfams that make up the software component of the system remain
largely unautomated. Choice of data and query formulation and application
are performed by a systems technician.

The disadvantages of systems at level 1 are primarily related to re-
strictions of batch-processing, serial files, and the limited range of
package programs. Batch processing results in a time lag for responding to
a query. This lag is essentially the turn-around time on the computer. To
gain the advantage of no fixed hardware cost, the computer is shared with
other users in a batch processing mode of operation. Turn-around time depends

largely upon the queue length of jobs. Also related to batch processing and - .

63

n

restment is the restraint upon data organization into serial

(&

files. Data organized in serial files may nccessitate scanning an cntire
file for order to access a few entities, whereas if these data were retained
on addressable storage the entities could be direct&y accessed.‘ Finally,

a package program is written to accomodate a class of problems. Problems
beyond classes for which package progfams exist require a special program
be written. At this level special programs must be written in a general
purpose programming language and may require considerable skill, effort, and
time.

Systems at level 1, with problem-oriented language-like package programs,
generally exhaust present systems for handling urban or spatial data. Be-
cause of undemonstrated or uncertain payoffs, development of urban data sys-
tems for haﬁdling spatial data for planning purposes have largely been forced
into systems at level 1 where no fixed hardware cost is necessary. Until a

payoff for urban data systems can be demonstrated, this will continue.

Level 2

The hardware-software configuration of systems at level 2 along the
continuum offer greater specialized capability for handling spatial data. Use
of a problem-oriented language facilitates ekpression of a query as a proces-
sing request in a form more convenient to the user. Secondly, data may be
retained on exclusive addressable storage, thus facilitating accessing
specific entities. |

Computer systems at level 2 enable considerably more design freedom than
is available at level 1. This is particularly due to the availability of
direct access storage. Often used and accesscd data can be structured and

retained for continued usage.

64

Package programs and a problem-oriented language cannot always be dis-
tinguished as the so-called problem oriented language may be a means of
specifying parameters stated in English-like sentences to package programs.
Romtran [6] is a problem-oriented language uscd to specify paraﬁeters and
the performance of arithmetic operations for individual package programs
for graphic display of spatial data. Span [1] is a system of package pro-
grams whose parameters are specified by an English-like language. As dis-
cussed in Part I, Chapter 2, Span has a considerable range of capabilities
from file manipulation to statistical analysis. The large number of available
options or packages enables Span to perform as a language as far as most users
are concerned. Span can handle the bulk of file management and file proces-
sing needs, for unit-record serial files. However, Span would have to be
augmented to handle data stored on auxillary direct access storage to be
used in systems at level 2.

Selection or design of a problem-oriented programming language is related
to data structure. Many problem-oriented languages such as Span and Romtran
can only handle unit-length records. Others such as Mark IIT [7] can handle
variable length records. Software must be designed to handle the form of
the data. Particularly important is the design of the data structure for the
data to be retained on auxillary storage.

Implementation consists of designing the problem-oriented language and
developing this software system, or installing an existing software system.
Implementation also consists of preparing the data base, both the serial files
and the direct access files. Use of systems at level 2 consists of running
programs whose paramcters are specified in a problem-oriented language. These
programs process data stored in serial files or on the exclusive auxillary

direct access storage. Updating the auxillary storage device poses a new,

65

although not scrious, problem. Updating is the opposite of retrieval. By
mcans of a mapping function or scanning a list the appropriate slot is
found. Ncw data can be positioned or existing data can be retrieved.,

The primary advantage of systems at level 2 is that a miniﬁal hardware
investment provides much greater capability to store complex data structures,
and to access often used data without requiring sequential scarching. In
addition, a problem-oriented programming language, with a broad range of
capability, enables the user himself, to perform much of the data manipula-’
tion, search, and processing,

The disadvantages of systems at level 2 again relate to the turn-around
time on a general purpose computer operated as a batch-processor. Again,
the data system is just another job to the computer. The second disadvantage
is that updating the auxillary storage consumes computer time just as

accessing it for retrieval purposes does.

Leve1'3

Level 3 hardware-software configurations are oriented to facilitate
query response, but at the expense of large-scale data processing. Systems
at this level enable rapid access to data in addressable storage. The on-
line query formulation and immediate computer access via time-sharing provide
a "real-time'" query system. Real-time in the scnse that query response is
virtually immediate with respect to using the answer.

Design of systems at level 3 are clearly a response to a need for
handling queries that are posed at irregular times and that require immediate
answers. Such a need might be to inquire as to account balances, to determine
owners of vehicles given the license number, to determine the present location
of freight cérs, or to determine the status of an order. Difficulties arise

in designing file manipulation capabilities for a time-shared computer system.

66

using a common language. With "simultancous' users, a time-sharing computer
must éonvprse in a single ianguage. Thus, the user of the data system must
converse of query the éata using tﬁe langﬁage. Package pfograﬁs or routines
written in this éOmmon language could be called and parameters specified to
negate a good share of this problem, however. An important design consider-
ation is to protect data and programs from "simultancous" users. Safeguards
must be designed in the time-sharing system and/or the data system to in-
sure that data and programs are not destroyed or accessed by others.

Implementation, use, and updating considerations are greatly influenced
by the choice of a time-sharing system. Implementation consists of preparing
and protecting the data base, and to write often used queries or elements of
queries as package programs that are activated by specifying on a single
entity. Entities are accessed by a mapping function that calculates a storage
location from a key or are accessed using list structures. For example, given
a license number or social security number the associated data entity can be
accessed. Updating such a file is again the reverse of retrieving. The re-
trieval key is used to find a location for storing the data entity.

The primary advantage of systems at level 3 relate to the capability of
immediate response to queries that are directed to addrcssable data. This
advantage is of great importance to many data users. Immediacy of response is
necessary for many functions, and an on-line query system is essential to pro-
vide this immediacy. In addition, time-sharing is advantageous to minimize
the fixed hardware costs. Computer costs are primarily dependent upon usage.

Some disadvantages of systems at level 3 are: no choice of a programming
language, the time-sharing systems may be implemented on hardware beyond the‘”

needs for file manipulation, problems in protecting data and prégrams, and

67

large-scale processing or long scquential scarchegicnnnot be efficiently
conducted in the time-sharing mode. DBoth the programming language and
hardware of a time-sharing systen are probably gearcd more for sﬁientific
computing than file maintenance and queries, This might Bc avoided if enough
uscrs having siwmilar query necds were to band together and develop their

own time-sharing system, This would probably prove expensive to develop

but morc efficient in opcration. The problems of protccting data and pro-
grans from destruction by simultancous users is related to the need for an
exclusive random access storage device for usc in the data system., Protcct-
ion must be designed into the systcm.so that other uscrs cannot access the
exclusive auxillary data. Probably thc most serious disadvantage of level

3 systems relate to the exclusion of large-scale data processing or long
searches, !leeting the objectives of immediate query resmonse and minimiz-
ing hardware investment, sacrifices capabilities for production work, Prod-
uction work must be done on a computer systenm that is not operated in a
time-sharing mode. lHowever, the prograns may be written and debugged on the

time-sharing systen,

Level 4

Level 4 systems consist of a hardware-softwarc configuration that can
be operated in an on-line mode or as a batch processor, The on-line mode
has priority and interrupts work being run in the batch processing modes:
Level 4 systenms also have exclusive auxillary addressable stroage and a query
system amenable to posing queries by specifying parameters using remote
consoles. Level 4 systcus enable both queries and production, Subject to
query interrupt, time may be leascd to other users to reduce fixed hardware
costs,

Design of systems at level 4 involve formulation of a mcthod for changing

68

wode of operation from a batch processor to an on-line query system and back
again., Provision must be made to interrupt, to save what was being proces-
sed and to restore the original job upon completion of the quory;

Implementation, usc, and updating phases of level 4 systems arc sub-
Stantially free from major hardware-software constraints., Level 4 systems
facilitate both query capability and large-scale data processing, In imle-
mentation the major concern is with developing and spccialized monitor system
that can operate in two modes, One node being a production system and the
other being a query system, Production or large-scale data processing typ-
ical of the nceds of functional agencies would operate in the batch-proces-
sing mode. Vork in this mode would be subject to interrupt to enable im-
nediate response to queries to the data base, The form of the data basc is
extremely flexible, Level 4 systems are primarily to serve this data basec.
Its main function is in file manipulation and data retrieval for a single
data base,

The chicf advantage of level 4 systems relate to the versatility and
flexibility of being ablg to respoitd to queries and te perform large-scale
data processing functions. As well as the ability to do both, these systems
give priority to queries. Systems at this level offer great power in pro-
viding a full range of dafa system capability., Whercas systems of lower
levels may perform one function well they may have compromised their perforn-
ance in another area, Level 4 systems poscs a powerful enougn hardware-
softwarc configuration to provide a full range of urban data system needs,

The chief disadvantage of level 4 systems is that it involves an expen-
sive hardwﬁrc—softwarc configuration. To justify an expensive hardware-
softwarc configuration sufficient system payoff must be demonstrated, Yet

there is too little experience with flexible data systens to demonstrate or

determine the payoffs with respect to spatial or urban data systems, 7To
justify a data system at level 4, one must have a Aéod for frequent queries
to a large data basce thut requires fast response, and a nced for'largc‘scalo
processing of data, IHowever, this lérge scale data processing need may be

fulfilled by making the computer systemn available to others to usc in the

batch processing mode,

Level 5

Level 5 systems consist of a specially designed hardware and specially
designed software., Specially designed, in that the procedures for handling
the problems and necds of spatial data are designed into the system, For
example, it would not be necessary to devise logic and write a program to
determine whether data are within a set of aveal units or to manipulate these
data for summarizing to these areal units, Rather, these functions are desig-
ned into the hardware or software., Quest, dcscribed in Part 1I, Chapter 5,
excmplifies in a limited way, this approach with its built-in-polygon test,
Level 5 systéms, as does level 4 systems, include two mode usage and exclusive
dircct access storage. In fact, the entire configuration of level 5 calls
for exclusive use in a spatial data system because the specially designed
features preclude use by others,

The design of level 5 systems assumes little in the way of hardware con-
straints, Functions that are often performed may warrant the design of hard-
warc that will amortize the cost through repeated usage. Such functions as
point-in-polygon tests, a directory for spatial data, and two dimensional
storage for map or coordinate data, may warrant specially designed hardware,
So in the design stage, therc is not only the need to conceive software

systems, but also to consider whether a function is better accomplished by

70

designing a hardware component to perform the action of a complex or oftcﬁ
used subprogram, At level .5 the designer is not working within a given
hardware configuration; fhc design-prOCCSs includes design of hardware
componcnts as nccdcd,

Two-dimensional.dcvices for graphical display and graphical input are
important clements of a system specifically for spatial data. Cathode Ray
Tube (CRT) devices are essential for the efficient input-output capabil-
ities. CRT's are an integral part of level 5 systems, Display of data
that are positioned in two or three dimensional space and digitizing of
spatial data may be facilitated through the use of specially designed CRT's
that are on-line with level 5 systems,

Anothey important built-in feature of a level 5 system is a strect
address to locational coordinaté translation system, Dial [3] has devel-
oped a software system that requires several stages of discrete operations,
It is envisioned that a level 5 system performs these stages internally and
without several independent computer submissions. Again, the design problem
is to determine which functions arc to be performed by hardware and which
by software, Such a translation system needs to be flexible enough to
accept addresses in various forms and order and still convert these to
coordinate locatibns. To achieve this flexibility the translation system
must consist of a capability to distinguish between street number, strect
name, strcet type, post office name, etc, The directory of street address
ranges to éoordinate locations may also be stored in direct access storage
to enable processing of unordered addresses, This translation capability
is an important task in handling urban data and is considered to be essen-
tial for SystCms at level 5,

Implementation of level 5 systems include the construction and testing

of hardware components as well as developing a software system,

71

sr e + - 3
ucTy system and a data handling

Implementation involves developuent of

8}
£

capability possessing a great deal of power with a minimal degree of user
combutcr skills. One of the objectivés in automatiﬁg ﬁost functions is to
bring the computer closer to the user, | o .

Use of level 5 systems and data updating are highly automated, With
the design and implenmentation emphasis on automating often used functions,
either by means of specially designed hardware or software, much of the
burden of posing queries or handling data is removed from the user. Desired
user capabilities such as a simplified means of expressing on-line queries,
and a uscr-oriented programming language for manipulating spatial data,
facilitate system use by non-specialists in computer programming. As in
systems of level 4, the systems of level 5 possess an interrupt for on-line
queries, A$ is programming at this level, updating data is concerned to be
done in a very automated way. Data directly from sources are added to the
system in much the same way as regular reports are produced, Updating and
reporting are both considered a normal function that does not require
special action. These functions are built-in,

The advantages of level 5 systems rclate to specially designed features
which enable cfficient performance at the desired functions., Systems whose
hardware as well as software are designed for the explicit needs of handling
spatial data provide a powerful user-oriented tool for manipulating and
analysis of spatial data, The built-in capabilities, such as point-in-
polygon tests, graphic display, and strcet address translation enables rapid
and low unit cost response.

The disadvantages of level 5 systems relate to their high design and
development cost, A considerable hardware and software investment is ncces-
sary prior to usage. Amortization of these costs necessitates that these

systens be used extensively, that these systems provide a substantial savings

72

over other systems or that systems of lessor power could not perform the
desired objectives. Another disadvantage is that these systems require
full utilization by the primary agency as the specially designed features
probably preclude use of the system by other unrelated users. Thus, spare
time is lost rather than sold to the others. The needs for the system
must fully justify the costs of the system. This is an extremely difficult

estimate in light of the dearth of experience and the difficulty in assigning

value to information used for planning in the public sector.

Summary

The range of hardware-software configurations discussed here illustrate
the interrelationships between the hardware and software. A given capability
may be achigved by a limited hardware configuration and an extensive soft-
ware system or it can be achieved by a more powerful hardware configuration
and thereby require less extensive software. Trade-off consideration
between hardware and software is an area that needs more study. The above
prescntation only illustrates the range and poscs the problem in some sort

of framework.

o
References

Almendinger, V. V., Span Reference Manual: Span Operation, System
Development Corporation, TM-1563/010/01, February 1965 (AD 613 284).

Baum, C. and L. Gorsuch (Eds.), Proceedings of the Second Symposium
on Computer-Centered Data Base Systems, System Development Corpora-
tion, TM-2624/100, 1965 (AD 625 417).

Dial, R. B., Street Address Translation System, Urban Data Center,
University of Washington, 1964.

Hall, A. D., A Methodology for Systems Ingineering, D. Van Nostrand,
1962.

Hodge, C. (Ed.), '"Direct Dialing to Digital Computers," Bulletin of
the Inter-University Communications Council (EDUCOM), Vol. 1, No. 1
January 1966.

Horwood, E. M., Using Computer Graphics in Community Renewal, CRP
Guide No. 1, Urban Renewal Administration, Housing and Home Finance
Agency, 1963 (Available from U.S. Govermment Print Office, Wash-
ington, D.C.)

Postley, J., "Mark III File Management System,' Contained in Baum
and Gorsuch [2].

Unclassified
Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report js ¢lassified)

TTORIGINATIN G ACTIVITY (Corporate author) 2a. REPORT SECURITY € LLASSIFICATION
Department of Geography Unclassitied
Northwestern University 2b- cRroue
Evanston, I11inois. :

3. REPORYT TITLE

ot A

SPATIAL DATA SYSTEMS: SYSTEMS CONSIDERATIONS

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
Technical Report

5. AUTHOR(S) (Last name, first name, initial)

Dueker, Kenneth J.

e REFPORT DATE 7a8. TOTAL NO. OF PAGES | 7b. NO. OF REFS
December, 1966
Ba CONTRACT OR GRANT NO. 9a8. ORIGINATOR'S REPORT NUMBER(S)

Nonr 1228 (37)

b. PROJECT NO.

Technical Report No. 5

this report,

d.

Task No . 389-143 9b. OTHER R)EPORT NO(S) (Any other numbers that may bo assigned

10. AVAILABILITY/LIMITATION HOTICES

The distribution of this document is unlimited.

11. SUPPL EMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Geography Branch
Office of Naval Research

13. ABSTRACT .

Spatial data systems are concerned with the organization, handling, and
retrieval of data whose spatial position is of concern. Spatial data are of
particular concern in urban and transportation planning. In these fields con-
siderable attention is given to spatial and temporal variations of data.

The three volume report presents a discussion of concepts and techniques
that are essential in moving towards flexible and responsive urban information
systems. The following areas are emphasized:

1. Explication of terms associated with spatial data.

2. Discussion of means of organizing spatial data for

flexible and efficient retrieval.

3. Investlgatlon of data handling capabilities for organ-

izing and manipulating spat1a1 data.

4. Presentation of these topics in a tutorial form, con-

ceivably to serve as a text where none presently exist.

The greater speeds and storage capacities of newer computers requires new
concepts of data organization and new means to create and access these more
complex data structures. Of particular concern in urban and transportation
planning are needs to link separately collected data that relate to the same -
phenomena or spatial locations, and a need for user-oriented data handling
capabilities. These needs are explored and recommendations are made.

DD 15?5%4 1473 Unclassified

Security Classification

Unclassified

Security Classification

14.
KEY WORDS

LINK A
ROLE

LINK B
ROLE

LINK C
ROLE

Geography
Spatial Data Systems
Urban Data

Language

INSTRUCTIONS

1, ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURTY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
“Restricted Data’’ is included. Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200, 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

S. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter last name, first name, middle initial.
If military, show rank end branch of service. The name of

the principal author is an absolute minimum requirement.
6. REPORT DATZ: Enter the date of the report as day,

month, year; or month, year. If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
shouid follow normal pagination procedures, i.e., enter the
number of pages containing information

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.

8b, &, & 8d. PROJECT NUMBER: Enter the appropriate

" military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR’S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator

or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) “‘Qualified requesters may obtain copies of this
repost from DDC.”’

(2) *“Foreign announcement and dzssemmatxon of this
report by DDC is not authorized.’’

(3) *‘““U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

.)l

(4) *‘U. S. military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

.’l

(5) ¢ All distribution of this report is controlled Qual-

ified DDC users shall request through

If the report has been furnished tc the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

11, SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual

" summary of the document indicative of the report, even though

it may also appear elsewhere in the body of the technical re- .
port. If additional space is required, a continuation sheet shall
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation cn the length of the abstract. How-

ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rules, and weights is optional.

GPO 886-551

Unclassified

Security Classification

